p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.387C23, (C4×D8)⋊40C2, C8⋊D4⋊8C2, C4⋊C4.247D4, (C4×Q16)⋊40C2, C8⋊2Q8⋊29C2, C8.10(C4○D4), C2.24(D4○D8), C8⋊7D4.11C2, C22⋊C4.87D4, C2.24(Q8○D8), C23.84(C2×D4), C8.18D4⋊36C2, C8.12D4⋊19C2, C4⋊C4.114C23, (C2×C4).373C24, (C2×C8).566C23, (C4×C8).223C22, (C4×D4).94C22, C4⋊Q8.116C22, SD16⋊C4⋊20C2, (C4×Q8).91C22, C8○2M4(2)⋊17C2, (C2×D8).134C22, (C2×D4).128C23, C4⋊D4.35C22, (C2×Q8).116C23, C8⋊C4.130C22, C2.D8.184C22, C22⋊Q8.35C22, (C22×C8).302C22, (C2×Q16).130C22, (C2×SD16).23C22, C4.4D4.35C22, C22.633(C22×D4), D4⋊C4.206C22, C22.36C24⋊5C2, (C22×C4).1053C23, Q8⋊C4.207C22, C42⋊C2.330C22, C42.28C22⋊34C2, (C2×M4(2)).283C22, C2.70(C22.26C24), C4.58(C2×C4○D4), (C2×C4).145(C2×D4), SmallGroup(128,1907)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.387C23 |
Generators and relations for C42.387C23
G = < a,b,c,d,e | a4=b4=c2=d2=1, e2=cbc=b-1, ab=ba, ac=ca, dad=ab2, ae=ea, bd=db, be=eb, dcd=a2c, ece-1=b-1c, de=ed >
Subgroups: 348 in 181 conjugacy classes, 88 normal (44 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C4×C8, C8⋊C4, D4⋊C4, Q8⋊C4, C2.D8, C2.D8, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42⋊2C2, C4⋊Q8, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C8○2M4(2), C4×D8, C4×Q16, SD16⋊C4, C8⋊7D4, C8.18D4, C8⋊D4, C42.28C22, C8.12D4, C8⋊2Q8, C22.36C24, C42.387C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.26C24, D4○D8, Q8○D8, C42.387C23
(1 35 27 12)(2 36 28 13)(3 37 29 14)(4 38 30 15)(5 39 31 16)(6 40 32 9)(7 33 25 10)(8 34 26 11)(17 58 53 48)(18 59 54 41)(19 60 55 42)(20 61 56 43)(21 62 49 44)(22 63 50 45)(23 64 51 46)(24 57 52 47)
(1 7 5 3)(2 8 6 4)(9 15 13 11)(10 16 14 12)(17 23 21 19)(18 24 22 20)(25 31 29 27)(26 32 30 28)(33 39 37 35)(34 40 38 36)(41 47 45 43)(42 48 46 44)(49 55 53 51)(50 56 54 52)(57 63 61 59)(58 64 62 60)
(1 8)(2 7)(3 6)(4 5)(9 14)(10 13)(11 12)(15 16)(17 54)(18 53)(19 52)(20 51)(21 50)(22 49)(23 56)(24 55)(25 28)(26 27)(29 32)(30 31)(33 36)(34 35)(37 40)(38 39)(41 58)(42 57)(43 64)(44 63)(45 62)(46 61)(47 60)(48 59)
(1 41)(2 42)(3 43)(4 44)(5 45)(6 46)(7 47)(8 48)(9 55)(10 56)(11 49)(12 50)(13 51)(14 52)(15 53)(16 54)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)(25 57)(26 58)(27 59)(28 60)(29 61)(30 62)(31 63)(32 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,35,27,12)(2,36,28,13)(3,37,29,14)(4,38,30,15)(5,39,31,16)(6,40,32,9)(7,33,25,10)(8,34,26,11)(17,58,53,48)(18,59,54,41)(19,60,55,42)(20,61,56,43)(21,62,49,44)(22,63,50,45)(23,64,51,46)(24,57,52,47), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,56)(24,55)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,58)(42,57)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,35,27,12)(2,36,28,13)(3,37,29,14)(4,38,30,15)(5,39,31,16)(6,40,32,9)(7,33,25,10)(8,34,26,11)(17,58,53,48)(18,59,54,41)(19,60,55,42)(20,61,56,43)(21,62,49,44)(22,63,50,45)(23,64,51,46)(24,57,52,47), (1,7,5,3)(2,8,6,4)(9,15,13,11)(10,16,14,12)(17,23,21,19)(18,24,22,20)(25,31,29,27)(26,32,30,28)(33,39,37,35)(34,40,38,36)(41,47,45,43)(42,48,46,44)(49,55,53,51)(50,56,54,52)(57,63,61,59)(58,64,62,60), (1,8)(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,16)(17,54)(18,53)(19,52)(20,51)(21,50)(22,49)(23,56)(24,55)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,58)(42,57)(43,64)(44,63)(45,62)(46,61)(47,60)(48,59), (1,41)(2,42)(3,43)(4,44)(5,45)(6,46)(7,47)(8,48)(9,55)(10,56)(11,49)(12,50)(13,51)(14,52)(15,53)(16,54)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)(25,57)(26,58)(27,59)(28,60)(29,61)(30,62)(31,63)(32,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,35,27,12),(2,36,28,13),(3,37,29,14),(4,38,30,15),(5,39,31,16),(6,40,32,9),(7,33,25,10),(8,34,26,11),(17,58,53,48),(18,59,54,41),(19,60,55,42),(20,61,56,43),(21,62,49,44),(22,63,50,45),(23,64,51,46),(24,57,52,47)], [(1,7,5,3),(2,8,6,4),(9,15,13,11),(10,16,14,12),(17,23,21,19),(18,24,22,20),(25,31,29,27),(26,32,30,28),(33,39,37,35),(34,40,38,36),(41,47,45,43),(42,48,46,44),(49,55,53,51),(50,56,54,52),(57,63,61,59),(58,64,62,60)], [(1,8),(2,7),(3,6),(4,5),(9,14),(10,13),(11,12),(15,16),(17,54),(18,53),(19,52),(20,51),(21,50),(22,49),(23,56),(24,55),(25,28),(26,27),(29,32),(30,31),(33,36),(34,35),(37,40),(38,39),(41,58),(42,57),(43,64),(44,63),(45,62),(46,61),(47,60),(48,59)], [(1,41),(2,42),(3,43),(4,44),(5,45),(6,46),(7,47),(8,48),(9,55),(10,56),(11,49),(12,50),(13,51),(14,52),(15,53),(16,54),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37),(25,57),(26,58),(27,59),(28,60),(29,61),(30,62),(31,63),(32,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | ··· | 4F | 4G | 4H | 4I | 4J | ··· | 4O | 8A | 8B | 8C | 8D | 8E | ··· | 8J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | 4 | 4 | 8 | ··· | 8 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○D8 | Q8○D8 |
kernel | C42.387C23 | C8○2M4(2) | C4×D8 | C4×Q16 | SD16⋊C4 | C8⋊7D4 | C8.18D4 | C8⋊D4 | C42.28C22 | C8.12D4 | C8⋊2Q8 | C22.36C24 | C22⋊C4 | C4⋊C4 | C8 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.387C23 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 15 | 0 |
0 | 0 | 0 | 16 | 0 | 15 |
0 | 0 | 1 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 16 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
8 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 14 |
0 | 0 | 0 | 0 | 14 | 14 |
1 | 13 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 13 | 0 | 9 |
0 | 0 | 4 | 0 | 8 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 0 | 0 | 13 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 3 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 14 |
0 | 0 | 0 | 0 | 3 | 3 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,16,0,1,0,0,0,0,16,0,1,0,0,15,0,1,0,0,0,0,15,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0],[16,8,0,0,0,0,0,1,0,0,0,0,0,0,3,14,0,0,0,0,14,14,0,0,0,0,0,0,3,14,0,0,0,0,14,14],[1,0,0,0,0,0,13,16,0,0,0,0,0,0,0,4,0,0,0,0,13,0,0,0,0,0,0,8,0,13,0,0,9,0,4,0],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,3,3,0,0,0,0,14,3,0,0,0,0,0,0,3,3,0,0,0,0,14,3] >;
C42.387C23 in GAP, Magma, Sage, TeX
C_4^2._{387}C_2^3
% in TeX
G:=Group("C4^2.387C2^3");
// GroupNames label
G:=SmallGroup(128,1907);
// by ID
G=gap.SmallGroup(128,1907);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,520,1018,80,4037,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=1,e^2=c*b*c=b^-1,a*b=b*a,a*c=c*a,d*a*d=a*b^2,a*e=e*a,b*d=d*b,b*e=e*b,d*c*d=a^2*c,e*c*e^-1=b^-1*c,d*e=e*d>;
// generators/relations